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Introduction

Acquired immunodeficiency syndrome caused by 
human immunodeficiency virus (HIV) is one of the most 
important life threatening diseases worldwide. HIV enve-
lope contains two glycoproteins, the surface glycoprotein 
(gp120) and the transmembrane glycoproteins (gp41) 
that are non-covalently linked in an oligomeric structure. 
Basically, these glycoproteins are the cleavage product of 
the gp160 precursor and the gp120 mediates HIV binding 
while gp41 mediates fusion with CD4+ cells1–3.

The glycosylation pathway (including the transfer 
of the glycon precursor onto the nascent protein and 
the subsequent glucose trimming) is needed for the 
processing, the folding, and the routing of the precur-
sor gene (Env). Glucosidases catalyze the final step in 
the digestive process of carbohydrates i.e., the hydro-
lysis of a glycosidic bond in oligosaccharides. They are 

responsible for the catalytic cleavage of a glycosidic bond 
with specificity, depending on the number of monosac-
charides, the position of cleavage site, and the configu-
ration of the hydroxyl groups in the substrate4,5. Due to 
the catalytic role in digesting carbohydrate substrates, 
α-glucosidase has also been the object of a special inter-
est by the pharmaceutical research community for other 
 carbohydrate-mediated diseases such as cancer, viral 
infections, diabetics, and hepatitis6–10.

Inhibition of these glucosidases, especially 
α-glucosidase (EC 3.2.1.20), has a profound effect on the 
glycon structure, which consequently affects the matura-
tion, transport, secretion, and function of glycoproteins 
and could alter the cell–cell or the cell–virus recognition 
process11. α-Glucosidase inhibitors such as DNJ, NB-DNJ 
and castanospermine are potent inhibitors of the HIV 
replication and HIV-mediated syncytium formation in 
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vitro. NB-DNJ is known to impair the processing of gp120 
associated N-linked oligosaccharides, resulting in pre-
dominantly neutral glucosylated precursor N-glycon2,12.

Quantitative structure activity relationship (QSAR) 
is one of the tools that link biological activity data with 
physiochemical descriptors of molecules. The aim of a 
developed QSAR model is to be able to predict the activ-
ity of previously untested structures/compounds and 
understanding the influence of chemical descriptors on 
the biological activity13–15.

Related to the foregoing and continuation of our group 
effort in the design and development of novel anti-HIV 
agents, the present work represents an effort to examine 
the applicability of QSAR approaches to the series of 
xanthone derivatives in α-glucosidase inhibitory activity. 
Xanthones, readily isolated from some medicinal plants, 
have been reported to exhibit several important bio-
logical activities, such as antitumor, anti-inflammatory, 
anti-thrombotic, and eukaryote kinase effects16–19. In this 
present work, a wide number of descriptors are used 
to construct QSAR models to interpret the structural 
features of the compounds required for α-glucosidase 
inhibitory activity. The literature search shows that only 
some QSAR study has been done on this target, using 
simple 2D and 3D descriptors16,20,21. Hence, to explore the 
additional structural features determining the binding 
affinity and mechanism of inhibition, more topologi-
cal descriptors (mainly electrotopological descriptors), 
atom count descriptors and hydrophobicity descriptors 
were considered in this QSAR study. These atomic level 
topological indices characterize the structural environ-
ment of each atom type in a molecule and offer the pos-
sibility of understanding the role of individual atomic 
types or groups, particularly functional groups such as 
-OH, -COOH, -NH

2
, etc., in a molecule for binding to the 

active site of α-glucosidase enzyme. The electrotopo-
logical state indices, based on the chemical graph theory 
have been found useful in several QSAR studies22–24. They 
have been used to develop models for many activities 
and properties, in both their atom level and atom type 
forms, and they represent the potential non-covalent 
intermolecular interaction between the molecules and 
α-glucosidase enzyme25,26.

Experimental
The data set for the present QSAR analysis was obtained 
from the literature published by Yan, et al16,27. The data set 
contains 43 α-glucosidase inhibitors with defined activity 
against Baker’s yeast and represented as concentration 
needed to inhibit the α-glucosidase activity by 50% (IC

50
) 

(Table 1). The reported µM inhibitory concentration was 
converted to molar concentration and then to−logIC

50
 

(pIC
50

) to make the concentration proportional to free 
energy of interaction of the compounds with the receptor 
and to reduce the skewness of the data set.

The structure of the xanthone derivatives consid-
ered for this present study was sketched on Chemdraw 
ultra 11.0.1 software and converted to its 3D structure 

in Chem 3D module of ChemBioOffice 2008 software28. 
The structure and its inhibitory concentration are given 
in Table 1. The energy optimization of the molecules was 
performed by batch calculation in V life MDS (Molecular 
Design Suite)29 software using Universal Force Field. The 
physicochemical descriptors include 239 physicochemi-
cal parameters, 700 alignment type parameters, and 99 
atoms types count descriptors that were calculated for 
the energy-optimized molecules using the same soft-
ware. Molecular descriptors have been routinely used 
for quantitative description of structural and physi-
cochemical properties of molecules. In this study, more 
than 300 calculated descriptors (2D) were subjected to 
sequential multiple linear regression analysis, in order to 
establish a correlation between physicochemical param-
eters and α-glucosidase inhibition. The QSAR models 
were built using the QSAR module of V life software and 
the Statistica 8.0 statistical software30. The data set was 
divided into training and test set in order to perform 
the QSAR analysis. The test set compounds (~25%) were 
selected by randomly in V life software. The analysis was 
performed on different training and test set compounds, 
and the best variables were selected by partial least 
squares. In order to reduce the chance correlation of the 
descriptors while developing the QSAR models, care was 
taken to reduce the intercorrelation between the descrip-
tor below 0.5 and the rule of thumb was adopted for lim-
iting the number of descriptors in the model (three to six 
times the number of parameters under consideration)31. 
Since a multiple linear model with a large number of 
variables can be too cumbersome to use, we have used 
stepwise regression to refine the model by determining 
the relative importance of each variable and its statisti-
cal significance. Furthermore, an equation containing 
an excessive number of independent variables is likely to 
be overfitted. In this present study, the upper limit (six 
compounds for a descriptor) was adopted for limiting the 
number of descriptors in the model.

Any QSAR modeling should ultimately lead to statis-
tically robust models capable of making accurate and 
reliable predictions of biological activities of new com-
pounds. The derived models were validated to examine 
the self-consistency between them, which implies a 
quantitative assessment of the model robustness and its 
predictive power. The predictive ability of the model is 
also quantified in terms of the corresponding leave-one-
out cross-validated parameters, Q2, predicted residual 
sum of squares (PRESS), S

PRESS
, and standard deviation 

of the error of prediction (SDEP). To obtain information 
on the reliability of prediction, a validation (test) data set 
was randomly selected (~25%) of the whole data set.

Results and discussion

Multiple regression analysis was performed to correlate 
the physicochemical descriptors with the α-glucosidase 
inhibitory activity of xanthone derivatives. The best-
derived QSAR models were selected on the basis of the 
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Table 1. Structure and α-glucosidase inhibitory activity of xanthone derivatives considered for the study.

O

OR5

R4

R3 R2

R1

Compound code R
1

R
2

R
3

R
4

R
5

IC
50

 (µM)

T-1 OH H H H H 177.4
T-2 OH OH H H H 160.8
T-3 OH H H H OH 91.5
T-4 OH H OH H H 131.4
T-5 OH OH H H OH 81.8
T-6 OH OH OH H H 41.5
T-7 OH OH H OH H 14.7
T-8 OH OH OH H OH 17.1
T-9 OAc OAc H H H 31.9
T-10 OAc H OAc H H 138.9
T-11 OAc OAc H OAc H 46.5
T-12 OAc OAc OAc H OAc 49.7
T-13 OH OCH

3
H H H 172.9

T-14 OH OC
2
H

5
H H H 110.8

T-15 OH OC
4
H

9
H H H 130.1

T-16 OH OC
5
H

11
H H H 120.9

T-17 OH OC
7
H

15
H H H 113.8

T-18 OH C
8
H

17
H H H 123.7

T-19 OH OC
10

H
21

H H H 115.6

T-20 OH

CH2O
H H H 98.2

T-21 OH O
CH2O

H H H 66.6

T-22 OH O

CH2O

H H H 53.0

T-23 OH

N
CH2O

H H H 115.4

T-24 OH

N N C3H6O

Cl H H H 61.8

T-25 OH H O
CH2O

H H 63.5

Table 1. continued on next page
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Compound code R
1

R
2

R
3

R
4

R
5

IC
50

 (µM)

T-26 OH H

N
CH2O

H H 132.7

A H H H H H >200
B OAc H H H H >200
C OH OCH

2
CH

2
OH H H H >200

D OH OCH
2
CH(OH)CH

2
OH H H H >200

E OH H OCH
2
CH

2
OH H H >200

Detail of compounds T-27 to T-43.
Compound code Structure IC

50
 (µM)

T-27

OCH3O

O OH 9.3

T-28

O

OH

OH

O

HO

5.8

T-29

O

OH

OH

O

OH

8.0

T-30

OCH3O

OHO 31.3

T-31

NO2

O

O OH

OH

20.1

Table 1. continued on next page

Table 1. Continued.
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Compound code Structure IC
50

 (µM)

T-32

O

OH

OH

27.8

T-33

O

OH

OH

O
39.9

T-34

O

OH

OH

34.9

T-35

NO2

O

OH

OH

OH

H

H

H

H

235.2

T-36

O

OH

OH

NH2

O 102.3

T-37

OC3H6BrO

OHO 146.6

Table 1. continued on next page

Table 1. Continued.
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Compound code Structure IC
50

 (µM)

T-38

O

OHO

O

198.1

T-39

NO2

O

OHO

OH

5.9

T-40

O

OHO

OH

NH2

6.3

T-41

O

OHO

OH

NH2

8.3

T-42

OC3H6BrO

OHO 29.7

T-43

O

OHO

O

67.3

The data for the analysis obtained from the literature sources16,27.

Table 1. Continued.

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
27

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



QSAR study on α-glucosidase inhibition 761

© 2011 Informa UK, Ltd. 

highest correlation coefficient (R), F statistic, t-test and 
the statistical relevance of the incorporated descriptors. 
The selected significant models are given below.

Model 1
pIC

50
 = 0.0125 (±0.0016) SAHA +0.3828 (±0.0338) SaaaC 

count (SCC) −0.1100 (±0.0263) dipole moment (DM) 
+3.7139 (±0.0804).

N = 43, R = 0.9056, R2 = 0.8202, AdjR2 = 0.8063, 
F

(3,39,0.01)
 = 59.2920 (4.3130), Q2 = 0.7782, standard error 

of estimation (SEE) = 0.2032, t
(39,0.0005)

 = 46.1840 (3.2905), 
p  =  0.0000, r2se = 0.2032, q2se = 0.2256, β-value for 
DM = −0.3100, SCC = 0.7700, and SAHA = 0.5660.

Model 2
pIC

50
 = 0.4065 (±0.0665) MMFF_6 −13.9314 (±4.2734) 

SAMH +0.3863 (±0.0411) SCC +0.0674 (±0.0280) 
Z-CompDipole (ZCD) +1.3507 (±0.4874).

N = 32, R = 0.9135, R2 = 0.8344, AdjR2 = 0.8099, 
F

(4,27,0.01)
 = 34.0140 (4.1060), Q2 = 0.7357, SEE = 0.2130, 

t
(27,0.0005)

 = 2.7713 (3.6896), p  =  0.0100, r2 se = 0.2129, 
q2se = 0.2691, pred_r2 = 0.6650, pred_r2se = 0.2296, β-value 
for ZCD = 0.1970, SCC = 0.7630, SAMH = −0.2600, and 
MMFF_6  =  0.4930.

In the analysis, we have also tried to develop significant 
models with additional descriptors and different training 
set to explain the inhibitory activity of the compounds. 
Unfortunately, other developed models possessed poor 
validation parameters; hence, we rejected those models 
for further analysis and discussion (see Supplementary 
material).

In the models, N is number of compounds contrib-
uted to build the respective model. The figures within the 
parenthesis following the regression coefficient terms 
are the standard error of the regression terms and the 
constants. R is the correlation coefficient and R2 is the 
squared correlation coefficient, describing the relative 
measure of the quality of fit by the regression equation. 
They explain the variation in the observed data (experi-
mental) and their value varies from −1 to +1. The closer 
the R or R2-value to 1, the better the goodness of fit of the 
regression equation.

F is the Fischer ratio and it represents the ratio 
between the variance of calculated and observed 
activities. The value within parentheses that follows 
the calculated F-value is the tabulated value for 99% 
significance. The F-value indicates that the regres-
sion relations are not a chance fit but are a significant 
occurrence.

The adjusted R2 is interpreted similarly to R2 but the 
adjusted R2 takes into consideration the number of 
degrees of freedom (Equation 1).

R 2  adjusted = 1  
(Residual 

SS
df

)

(Total 
SS
df

)
−

















, (1)

 where residual SS stands for error sum of squares and 
total SS for total sum of squares. It is the most widely 
used measure of the ability of a QSAR model to repro-
duce the data (goodness of fit). t Is the Student t-test and 
the value in the parenthesis after the calculated value, 
is the tabulated t-value at 0.0005 confidence level. The 
F statistics and the t-value of the selected models (1 
and 2) have a large margin of difference from tabulated 
values at 0.01 (99%) and 0.0005 (99.95%), respectively, 
which shows that the models are significant for further 
study.

The β-coefficient value is the standard regression coef-
ficients that would have been obtained by adjusting the 
variable values to a mean of 0 and a standard deviation 
of 1. It also allows us to compare the relative contribu-
tion of each independent variable in the prediction of the 
dependent variables30.

Q2 is the cross-validated correlation coefficient, 
which provides the statistical significance and pre-
dictability of the model. Q2 is used as a criterion of 
both robustness and predictive ability of the model. 
A high Q2 in the models is suggesting that the models 
will be useful for meaningful predictions32–34. Leave-
one-out cross-validation techniques were used to 
find out the predictive power of the model. It may be 
considered that a high Q2 (for instance Q2 > 0.5) is an 
indicator, or even the ultimate proof, that the model 
is highly predictive32–35. Cross-validated correlation 
coefficients of the derived models are greater than 
0.74 for training set and complete data set (Table 2). 
This shows that the selected models have sufficient 
predictive power and self-consistency. The relation-
ship between the predicted and observed activity 
values are represented graphically in Figure 1A and 
1B). The low S

PRESS
 and SDEP value for the models 

developed with the training set and the complete 
data set reveals the models are statistically significant 

Table 2. Summary of the validation parameters.

Models Parameters
Values  

(training sets) Values (test set)
Model 1 R2 0.8202  

Q2 0.7782  
PRESS 1.9858  
S

PRESS
0.2257  

SDEP 0.2149  
D2 2.9302  

Cooks distance 0.0283  
Model 2 R2 0.8344  

Q2 0.7357 0.6519
PRESS 1.9544 0.5271
S

PRESS
0.2690  

SDEP 0.2471 0.2189
D2 3.8750  

Cooks distance 0.7703  
Q2, cross-validated correlation coefficient; PRESS, predicted 
residual sum of squares; R2, squared correlation coefficient; 
SDEP, standard deviation of the error of prediction; S

PRESS
, 

standard error of PRESS; D2, mahalanobis distances.

Jo
ur

na
l o

f 
E

nz
ym

e 
In

hi
bi

tio
n 

an
d 

M
ed

ic
in

al
 C

he
m

is
tr

y 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
M

al
m

o 
H

og
sk

ol
a 

on
 1

2/
27

/1
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



762 N.S.H.N. Moorthy et al.

 Journal of Enzyme Inhibition and Medicinal Chemistry

for the activity prediction (Table 3). It is supported by 
the PRESS and SDEP value obtained from the test set 
compounds is <2 confirm that the above-mentioned 
statement for the predictive ability of the models 
(Table 2)36. The models also have been used to pre-
dict the activity of the test compounds and are given 
in Table 4. The cross-validated correlation coefficient 
of the test set compounds is >0.5 shows the selected 
model (model 2) is significant for activity prediction. 
PRESS and SDEP values for the test compounds also 
<1 shows the model is significant. The high pred_r2 
and low pred_r2se were show high predictive ability 
of the model. The low standard error of pred_r2se, 
q2_se and r2_se shows absolute quality of fitness of 
the model. The scatter plot between the observed and 
the predicted activity of the test set compounds are 
represented in Figure 2.

The stability of the models depends upon the multi-
collinearity and serial correlation of the descriptors. To 
confirm the absence of multicollinearity, the variable 
inflation factor (VIF) was calculated for each parameter 
in the regression. VIF denotes the fact that the variance 
of the standardized regression coefficients can be com-
puted as the product of the residual variance (for the cor-
relation transformed model) and it can be calculated as 
Equation 214,15.

VIF = 
1

1 R
, or  

1

Tolerance− 2
, (2)

 where R2 is the multiple correlation coefficient of one 
parameter’s effect regressed on the remaining parame-
ters. VIF values less than 10 are statistically significant. In 
this present analysis we have chosen very stringent crite-
ria in terms of VIF value (<4) while performing the QSAR 
analysis. The descriptors used in the selected significant 
models have VIF values less than 1.1691, which show that 
the models are free from multicollinearity (Table 5)14.

Durbin–Watson (DW) test was employed to check the 
serial correlation of residuals (correlation of adjacent 
residuals). The DW statistics is useful for evaluating the 
presence or absence of a serial correlation of residuals 
(i.e., whether or not residual for adjacent cases are corre-
lated, indicating that the observations or cases in the data 
file are not independent)37,38. A DW value of the model 1 
is 1.1103, and the model 2 is 1.6876, which is significant 
at 1 and 5% respectively with the tabulated values. This 
shows that there is probably no autocorrelation in the 
residuals (Table 5).

Distance based approaches are also a way for vali-
dation of the models. They represent the distance from 
each point to a particular point. Mahalanobis distances 

3
3
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Observed activity (plC50)

P
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of model 1 (R2=0.8202)
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5.5
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P
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of model 1 (R2=0.8344)
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Figure 1. Graphs represent the plot between observed and predicted activity of the selected models. (A) Observed vs predicted activity of 
model 1 (R2 = 0.8202). (B) Observed vs predicted activity of model 2 (R2 = 0.8344).
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methods (D2) identify the interpolation region by assum-
ing that the data have a normal distribution.

MD = D ( ) = ( ) ( ),M
Tx,y x x− −−∑µ µ1

 (3)

 where ∑−1 is the inverse of the covariance matrix25,39,40.
Mahalanobis distances improve the prediction accu-

racy and speed up a solution for QSAR. The higher the 
Mahalanobis distances for a case (molecule), the more 
the independent variable diverges from the average 
value. The Mahalanobis distances of most of the cases 
in the selected models are less than or equal to the case 
value. This shows that the models have significant pre-
dictive power. Cook’s distance indicates the distance 
between the computed regression coefficient values and 
the values one would have obtained had the respective 
case has been excluded (leave-one-out). All distances 
should be of about equal magnitude otherwise there is 
reason to believe that the respective case (s) have biased 
the estimation of the regression coefficients41–43.

The average Cook’s distance value of the models is 
<0.77 which is <1 (squared Cook’s distances)41,42 and 
Cook’s distance of all the compounds has almost equal 
magnitude (<1), showing that the equation has significant 
predictive ability for α-glucosidase inhibitory activity.

Model 1 is a triparametric equation constructed 
with the complete data set. This models consist of SCC, 
DM, and SAHA, where SCC is an electrotopological 
descriptor (E-state) related to the total number of car-
bon atoms connected to a carbon atom which makes 
three aromatic bonds (SaaaC count). The magnitude 
of this descriptor depends on the nature of the substit-
uents. It is not a mere count of atoms but varies with 
the bonding environment of each atom. The positive 
contribution of these electrotopological descriptors 
shows that the introduction of a substitution in which 
a carbon atom binds to aromatic carbons and has less 
or non-electronegative groups tends to increase the 
E-state value, obviously increasing the α-glucosidase 
inhibitory activity44. DM is calculated from the par-
tial charges (spatial separation of positive and nega-
tive charges) of the molecule. The DM descriptor is 
an electronic property that indicates the response of 
a molecule to an electrostatic field. The dipole of the 
molecule has been correlated to long-range ligand 
receptor recognition and subsequent binding45. It also 
promotes binding affinity of molecules to the polar 
active sites. The negative sign in the coefficient of the 
descriptors reveals that the DM of the molecules is det-
rimental for the binding to the α-glucosidase enzyme. 
SAHA (SA hydrophilic area, SlogP A) is a hydrophobic-
ity descriptor related to the vdW surface with hydro-
philic surface area (By Audry method using SlogP). 
The positive contribution of these descriptors suggests 

Table 3. Observed and predicted activity of the models obtained 
from training set and complete data set.

Compound code pIC
50

Predicted activity

Model 1 Model 2

T-1 3.75 3.76 —
T-3 4.04 3.90 3.94
T-4 3.88 3.97 —
T-5 4.09 4.19 4.34
T-6 4.38 4.36 —
T-9 4.50 4.24 —
T-10 3.86 3.82 3.56
T-11 4.33 4.37 —
T-12 4.30 4.50 4.44
T-14 3.96 3.87 —
T-15 3.89 3.88 3.87
T-16 3.92 3.88 3.88
T-17 3.94 3.88 —
T-18 3.91 3.85 3.86
T-19 3.94 3.86 3.85
T-20 4.01 3.87 3.89
T-21 4.18 4.23 4.25
T-22 4.28 3.94 —
T-23 3.94 4.00 3.82
T-24 4.21 4.25 4.07
T-26 3.88 3.85 —
T-28 5.24 5.17 5.08
T-29 5.10 5.01 5.12
T-30 4.50 4.63 4.59
T-31 4.70 4.83 4.61
T-32 4.56 4.58 4.63
T-34 4.46 4.59 —
T-37 3.83 3.84 3.86
T-38 3.70 3.62 3.87
T-40 5.20 5.12 5.25
T-41 5.08 5.11 —
T-42 4.53 4.67 4.69
T-43 4.17 4.30 4.53

Table 4. Observed and predicted activity of the test set.
Compound code pIC

50
Predicted activity of model 2

T-1 3.75 3.54
T-2 3.79 —
T-4 3.88 3.90
T-6 4.38 4.30
T-7 4.83 —
T-8 4.77 —
T-9 4.50 3.89
T-11 4.33 4.14
T-13 3.76 —
T-14 3.96 3.87
T-17 3.94 3.88
T-22 4.28 4.33
T-25 4.20 —
T-26 3.88 3.82
T-27 5.03 —
T-33 4.40 —
T-34 4.46 4.61
T-35 3.63 —
T-36 3.99 —
T-39 5.23 —
T-41 5.08 4.91
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that the enzyme may contain some hydrophilic area 
for binding. The significant correlation coefficient 
and cross-validated correlation coefficient shows that 
this model has sufficient predictive power and that 
the descriptors have a significant contribution to the 
α-glucosidase inhibitory activity.

Model 2 was constructed with electrotopological 
(SCC), Z-CompDipole (ZCD), hydrophobicity (SAMH), 
and atom type count descriptors (MMFF_6). The 
MMFF_6 descriptor corresponds to the number of car-
bon atoms carrying oxygen atoms connected by single 
or double bonds as substituents24. It is evidenced by the 
compounds in the series have oxygen substituted carbon 
atoms leads to a greater α-glucosidase inhibitory activ-
ity. SAMostHydrophilic (SAMH) signifies most hydro-
philic value on the vdW surface (By Audry method using 
SlogP). The negative sign of these descriptors implies that 
the lower electrostatic potential in the vdW surface area 
of the molecule and the optimum hydrophilic value on 
the surface of the molecule are important for favourable 
α-glucosidase inhibitory activity.

ZCD is the DM descriptor signifies the z component 
of the DM. It calculated from the partial charges (spa-
tial separation of positive and negative charges) of the 
molecule in z-axis. This is an electrostatic descriptor 
explain the ligand receptor recognition and binding. In 
contrast to the DM in models 1, this descriptor posi-
tively correlated with the activity reveals that the DM 
in z-axis is important for the binding than in the whole 
compounds.

In this present QSAR study, different types of 
descriptors and training sets were used to build the 
significant models. The selected models show that 
the electrotopological and atom count descriptors 
along with electronic and hydrophobicity descriptors, 
resulted in models with very good statistical param-
eters. Topological structure descriptors and atom 
count descriptors are a representation of molecular 
structure that arise from the chemical identity of each 
atom, including valence state and the nature of the set 
of connections in the molecular skeleton, the chemical 
bonding pattern. The electrotopological state (E-state) 
index is shown to contain information reflecting inter-
molecular accessibility of atoms and groups in a mol-
ecule, especially electroaccessibility.

SaaaC count is atom type E-state indices that reflect 
the structural information for an individual atom (or atom 
type) but encoded from all atoms in the molecule46–48. 
The atomic count descriptors MMFF_6 is positively con-
tributed for the activity, which means that heteroatoms 
like all oxygen atoms bound to the carbon skeleton of the 
molecule (MMFF_6) is favourable for the α-glucosidase 
inhibitory activity.

Conclusion

From the study, it is concluded that the QSAR analysis 
of xanthone derivatives as α-glucosidase inhibitors was 
performed using different types of descriptors calculated 
from V life software. The cross-validation correlation 

Table 5. Redundancy and Durbin–Watson values of the descriptors used in the significant models.

Models Descriptors Tolerance R2 VIF
Durbin–Watson

Calculated Tabulated
Model 1 DM 0.8594 0.1406 1.1636 1.1103 1.098–1.518 (1%)

SCC 0.9947 0.0053 1.0053
SAHA 0.8553 0.1447 1.1691

Model 2 ZCD 0.9141 0.0859 1.0940 1.6876 1.177–1.732
SCC 0.9322 0.0678 1.0727
SAMH 0.9845 0.0155 1.0157
MMFF_6 0.9419 0.0581 1.0617

DM, dipole moment; SCC, stress corrosion cracking; R2, squared correlation coefficient; VIF, variable inflation factor.
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Figure 2. Observed vs predicted activity of test compounds. Graphs represents the plot between observed and predicted activity of test 
compounds.
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coefficients of the selected models are larger than 0.74, 
which demonstrates that all the final models are statisti-
cally significant and reliable. In the selected significant 
models, the topological (electrotopological) and atom 
count descriptors have contributed mainly to build the 
models. The results suggest that the presence of heteroa-
toms (number of oxygen atom connected with carbon 
atom) in the molecules is favourable for α-glucosidase 
inhibitory activity. The E-state count descriptor (SaaaC 
count) suggests that the carbon atoms connected with 
three aromatic bonds and hydrogen or other atoms are 
favourable for the α-glucosidase inhibitory activity. The 
hydrophobicity descriptors contributed in the models 
also suggest that the optimum hydrophilicity on the 
surface of the molecule is favourable for the inhibitory 
activity.

As per the earlier homology modeled structure of 
α-glucosidase enzyme1,4,6,11 shows that the active site 
has aspartic acid, histidine, and glutamic acid residues, 
hence it is possible the electronegative groups and 
other polar groups in the molecule can interact with 
the polar active site. These obtained results are agree-
ment with earlier our QSAR results on this target such 
that the compounds with optimum partition coefficient 
and polar surface volume in the van der Waals surface 
are favourable to α-glucosidase inhibitory activity. 
The α-glucosidase inhibitory activity increases with 
increases in the distance between the hydrophobic 
and the hydrophilic regions of the molecules and the 
electronegativity of the molecules. While the molecules 
posses DM groups and high hydrophobic groups are 
detrimental for α-glucosidase inhibitory activity20,21. 
The present study on this target, in conjunction with 
earlier results by our laboratory with different parent 
molecules will be helpful for further research in the 
direction of the ligand based or structure based design 
of novel α-glucosidase inhibitors.
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